Efficient and controlled nano-catalyst solid-oxide fuel cell electrode infiltration with poly-norepinephrine surface modification

نویسندگان

چکیده

There is a growing attention to enhance the performance of solid oxide fuel cell (SOFC) electrodes through incorporation nano-catalyst materials within electrodes’ active sites. In this study, we report technique for increased efficiency and microstructural control infiltration process polymerized norepinephrine (pNE) treatment. Nano-CeO2 catalysts were incorporated both commercial anode-supported SOFCs using single salt solution step after coating pNE porous microstructure. The optimization catalyst loading was performed by varying cerium nitrate concentrations between 0.4 2.0 M. ceria nanoparticles are distributed at near-electrolyte region in electrodes, but with variance due precursor molarity loading. time-dependent polarization resistance (Rp) variation categorized into three zones Zone I referred baseline low-catalyst fluctuating Rp. However, cells II III showed continuous activation as low 0.275 ? cm2 750 °C. results suggest that nano-CeO2 film reduces coarsening related degradation backbone. addition, pNE-assisted dip enhanced infiltrant deposition reducing number steps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the Role of Cerium Oxide as a Catalyst in Solid Oxide Fuel Cell Anodes

Title of Document: QUANTIFYING THE ROLE OF CERIUM OXIDE AS A CATALYST IN SOLID OXIDE FUEL CELL ANODES Steven C. DeCaluwe, Doctor of Philosophy, 2009 Directed By: Associate Professor Gregory S. Jackson, Department of Mechanical Engineering Solid Oxide Fuel Cells (SOFCs) are an important electrochemical power conversion device, due largely to their high efficiencies and ability to directly oxidiz...

متن کامل

Simulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass

Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...

متن کامل

An octane-fueled solid oxide fuel cell.

There are substantial barriers to the introduction of hydrogen fuel cells for transportation, including the high cost of fuel-cell systems, the current lack of a hydrogen infrastructure, and the relatively low fuel efficiency when using hydrogen produced from hydrocarbons. Here, we describe a solid oxide fuel cell that combines a catalyst layer with a conventional anode, allowing internal refor...

متن کامل

Integrating Multiple Solid Oxide Fuel Cell Modules

Abstract-According to SECA program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3–10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power supply. To provide this power using the SOFC mo...

متن کامل

Transient studies of perovskite anode catalyst for a direct CH4 Solid Oxide Fuel Cell

Introduction: The direct use of CH4 as the feed to the solid oxide fuel cell (SOFC) will allow elimination of a reformer, simplifying the SOFC system and decreasing the system cost [1]. The overall reaction on the anode catalyst in the direct CH4 SOFC is the electrochemical oxidation of CH4: CH4 + 4O CO2 + 2H2O + 8e. Due to the nature of hydrocarbon reactions at high temperature and the reducin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Power Sources

سال: 2021

ISSN: ['1873-2755', '0378-7753']

DOI: https://doi.org/10.1016/j.jpowsour.2020.229232